Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.11.11.21266107

ABSTRACT

Genome sequences allow quantification of changes in case introductions from abroad and local transmission dynamics. We sequenced 11,357 SARS-CoV-2 genomes from Switzerland in 2020 - the 6th largest effort globally. Using these data, we estimated introductions and their persistence throughout 2020. By contrasting estimates with null models, we estimate at least 83% of introductions were adverted during Switzerland's border closures. Further, transmission chain persistence roughly doubled after the partial lockdown was lifted. Then, using a novel phylodynamic method, we suggest transmission in newly introduced outbreaks slowed 36 - 64% upon outbreak detection in summer 2020, but not in fall. This could indicate successful contact tracing over summer before overburdening in fall. The study highlights the added value of genome sequencing data for understanding transmission dynamics.

2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.12.20193284

ABSTRACT

We estimate the basic reproductive number and case counts for 15 distinct SARS-CoV-2 outbreaks, distributed across 10 countries and one cruise ship, based solely on phylodynamic analyses of genomic data. Our results indicate that, prior to significant public health interventions, the reproductive numbers for a majority (10) of these outbreaks are similar, with median posterior estimates ranging between 1.4 and 2.8. These estimates provide a view which is complementary to that provided by those based on traditional line listing data. The genomic-based view is arguably less susceptible to biases resulting from differences in testing protocols, testing intensity, and import of cases into the community of interest. In the analyses reported here, the genomic data primarily provides information regarding which samples belong to a particular outbreak. We observe that once these outbreaks are identified, the sampling dates carry the majority of the information regarding the reproductive number. Finally, we provide genome-based estimates of the cumulative case counts for each outbreak, which allow us to speculate on the amount of unreported infections within the populations housing each outbreak. These results indicate that for the majority (7) of the populations studied, the number of recorded cases is much bigger than the estimated cumulative case counts, suggesting the presence of unsequenced pathogen diversity in these populations.

3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.10.20127738

ABSTRACT

The investigation of migratory patterns of the SARS-CoV-2 pandemic before border closures in Europe is a crucial first step towards an in-depth evaluation of border closure policies. Here we analyze viral genome sequences using a phylodynamic model with geographic structure to estimate the origin and spread of SARS-CoV-2 in Europe prior to border closures. Based on SARS-CoV-2 genomes, we reconstruct a partial transmission tree of the early pandemic, including inferences of the geographic location of ancestral lineages and the number of migration events into and between European regions. We find that the predominant lineage spreading in Europe has a most recent common ancestor in Italy and was probably seeded by a transmission event in either Hubei or Germany. We do not find evidence for preferential migration paths from Hubei into different European regions or from each European region to the others. Sustained local transmission is first evident in Italy and then shortly thereafter in the other European regions considered. Before the first border closures in Europe, we estimate that the rate of occurrence of new cases from within-country transmission was within the bounds of the estimated rate of new cases from migration. In summary, our analysis offers a view on the early state of the epidemic in Europe and on migration patterns of the virus before border closures. This information will enable further study of the necessity and timeliness of border closures.

SELECTION OF CITATIONS
SEARCH DETAIL